GSB Chemical Co.

Chemwatch Hazard Alert Code: 3

Chemwatch: 21-9623 Version No: 8.1 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Issue Date: 10/03/2023 Print Date: 18/07/2023 L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	CAMCLEAN Universal Gun Cleaner		
Chemical Name	Not Applicable		
Synonyms	iun cleaner.		
Proper shipping name	AINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL ncluding paint thinning or reducing compound)		
Chemical formula	Not Applicable		
Other means of identification	Not Available		

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Spray gun cleaner. Use according to manufacturer's directions. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing.
	Before starting consider control of exposure by mechanical ventilation.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	GSB Chemical Co.	
Address	84 Camp Road Broadmeadows VIC 3047 Australia	
Telephone	-61 3 9457 1125 (8am-5pm, Monday - Friday)	
Fax	+61 3 9459 7978	
Website	Not Available	
Email	info@gsbchem.com.au	

Emergency telephone number

Association / Organisation	GSB Chemical Co.	
Emergency telephone numbers	+61 3 9457 1125 (8am-5pm, Monday - Friday)	
Other emergency telephone numbers	13 11 26 (After hours)	

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	\$5	
Classification ^[1]	Flammable Liquids Category 2, Acute Toxicity (Oral) Category 4, Aspiration Hazard Category 1, Acute Toxicity (Dermal) Category 4, Serious Eye Damage/Eye Irritation Category 2A, Acute Toxicity (Inhalation) Category 4, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Reproductive Toxicity Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 2	
Legend:	1. Classified by Chernwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)		
Signal word	Danger	

Hazard statement(s)

AUH066	Repeated exposure may cause skin dryness and cracking.	
H225	hly flammable liquid and vapour.	
H302	Harmful if swallowed.	

H304	May be fatal if swallowed and enters airways.	
H312	Harmful in contact with skin.	
H319	Causes serious eye irritation.	
H332	Harmful if inhaled.	
H335	May cause respiratory irritation.	
H336	May cause drowsiness or dizziness.	
H361d	Suspected of damaging the unborn child.	
H411	Toxic to aquatic life with long lasting effects.	

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.		
P210	cep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.		
P271	Use only outdoors or in a well-ventilated area.		
P280	Wear protective gloves, protective clothing, eye protection and face protection.		
P240	sround and bond container and receiving equipment.		
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.		
P242	Jse non-sparking tools.		
P243	Take action to prevent static discharges.		
P261	Avoid breathing mist/vapours/spray.		
P264	Wash all exposed external body areas thoroughly after handling.		
P270	Do not eat, drink or smoke when using this product.		
P273	Avoid release to the environment.		

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.			
P331	Do NOT induce vomiting.			
P308+P313	IF exposed or concerned: Get medical advice/ attention.			
P370+P378	n case of fire: Use alcohol resistant foam or normal protein foam to extinguish.			
P305+P351+P338	F IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P337+P313	If eye irritation persists: Get medical advice/attention.			
P391	Collect spillage.			
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.			
P302+P352	IF ON SKIN: Wash with plenty of water and soap.			
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].			
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.			
P330	Rinse mouth.			
P362+P364	Take off contaminated clothing and wash it before reuse.			

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
108-94-1	30-60	cyclohexanone
78-93-3	10-<30	methyl ethyl ketone
64742-95-6.	10-<30	naphtha petroleum, light aromatic solvent
Not Available	balance	ingredients at levels determined not to be hazardous
Legend:	 Classified by Chernwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available 	

SECTION 4 First aid measures

Description of first aid measur	es
Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	 If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

- For acute or short term repeated exposures to petroleum distillates or related hydrocarbons:
 - Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure.
 Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate
- tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.
- Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology] Treat symptomatically.

for simple ketones:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5mL/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- -----
- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Consider intubation at first sign of upper airway obstruction resulting from oedema
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- + Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 Firefighting measures

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.

- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.
 Do not use a water jet to fight fire.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
----------------------	--

Advice for firefighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Fight fire from a safe distance, with adequate cover. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control the fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat, flame and/or oxidisers. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material.
HAZCHEM	•3YE

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. 					
	Chemical Class: ketones For release onto land: recommended SORBENT TYPE RANK APPLICA LAND SPILL - SMALL	sorbe	nts listed ir	n order of prid	prity. LIMITATIONS	
	cross-linked polymer - particulate	1	shovel	shovel	R, W, SS	
	cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RI	
	wood fiber - pillow	2	throw	nitchfork		
	treated wood fiber - pillow	3	throw	pitchfork	DGC. RT	
	foamed glass - pillow	4	throw	pitchfork	R, P, DGC, RT	
	LAND SPILL - MEDIUM					
Major Spills	cross-linked polymer - particulate	1	blower	skiploader	R,W, SS	
	cross-linked polymer - pillow	2	throw	skiploader	R, DGC, RT	
	sorbent clay - particulate	3	blower	skiploader	R, I, P	
	polypropylene - particulate	3	blower	skiploader	R, SS, DGC	
	expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC	
	polypropylene - mat	4	throw	skiploader	DGC, RT	
	Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy					

	Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;
	R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988
	Clear area of personnel and move upwind.
	Alert Fire Brigade and tell them location and nature of hazard.
	May be violently or explosively reactive.
	Wear breathing apparatus plus protective gloves.
	Prevent, by any means available, spillage from entering drains or water course.
	 Consider evacuation (or protect in place).
	No smoking, naked lights or ignition sources.
	Increase ventilation.
	Stop leak if safe to do so.
	Water spray or fog may be used to disperse /absorb vapour.
	Contain spill with sand, earth or vermiculite.
	Use only spark-free shovels and explosion proof equipment.
	Collect recoverable product into labelled containers for recycling.
	Absorb remaining product with sand, earth or vermiculite.
	Collect solid residues and seal in labelled drums for disposal.
	Wash area and prevent runoff into drains.
	If contamination of drains or waterways occurs, advise emergency services.
Personal Protective Equip ECTION 7 Handling	oment advice is contained in Section 8 of the SDS.
Precautions for safe ha	andling
	Containers, even those that have been emptied, may contain explosive vapours.
	Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
	DO NOT allow clothing wet with material to stay in contact with skin
	Electrostatic discharge may be generated during pumping - this may result in fire.
	Ensure electrical continuity by bonding and grounding (earthing) all equipment.
	Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its
	diameter, then $\leq 7 \text{ m/sec}$).
	Avoid splash filling.
	Do NOT use compressed air for filling discharging or handling operations.
	Wait 2 minutes after tank filling (for tanks such as those on

-	
Safe handling	 Containers, even those that have been emptied, may contain explosive vapours. Do NOT cut, drill, grind, weld or perform similar operations on or near containers. Do NOT allow clothing well with material to stay in contact with skin Electrostatic discharge may be generated during pumping - this may result in fire. Ensure electrical continuity by bonding and groupounding (earthing) all equipment. Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then. <= 7 m/sec). Avoid splash filling. Do NOT use compressed air for filling discharging or handling operations. Wat 2 minutes after tank filling (for tanks such as those on road tanker vehicles) before opening hatches or manholes. Wat 30 minutes after tank filling (for tanks arcs age tanks) before opening hatches or manholes. Even with proper egrounding and bonding, this material can still accumulate an electrostatic charge. If sufficient charge is allowed to accumulate, electrostatic discharge and ignition of flammable air-agour mixtures can occur. Be aware of handling operations that may give rise to additional hazards that result from the accumulation of static charges. These include but are nol limited to pumping gand filling ot tanks and containers, sampling, switch loading, gauging, vacuum truck operations the filling. operations there, this or yms. Nov dog splash filling. bo NOT use compressed air for filling discharging or handling operations. Avoid all personal contact, including inhiation. electrostatic discharge (= 1 m/s until III pipe submerged to twice it adimeter, thma 7 m/s. Novid splash filling. bo NOT use
Other information	 Store in original containers in approved flame-proof area. No smoking, naked lights, heat or ignition sources. DO NOT store in pits, depression, basement or areas where vapours may be trapped. Keep containers securely sealed. Store away from incompatible materials in a cool, dry well ventilated area. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this MSDS. Tank storage: Tanks must be specifically designed for use with this product. Bulk storage tanks should be diked (bunded). Locate tanks away from heat and other sources of ignition. Cleaning, inspection and maintenance of storage tanks is a specialist operation, which requires the
	 implementation of strict procedures and precautions. Keep in a cool place. Electrostatic charges will be generated during pumping. Electrostatic discharge may cause fire. Ensure electrical continuity by bonding and grounding (earthing) all equipment to reduce the risk. The vapours in the head space of the storage vessel may lie in the flammable/explosive range and hence may be flammable.

lining and see shill stand statistics start. E.

	 For containers, or container linings use mild steer, stainless steer. Examples of suitable materials are: nigh density polyethylene (HDPE), polypropylene (PP), and Viton (FMK), which have been specifically tested for compatibility with this product. For container linings, use amine-adduct cured epoxy paint. For seals and gaskets use: graphite, PTFE, Viton A, Viton B. Unsuitable material: Some synthetic materials may be unsuitable for containers or container linings depending on the material specification and intended use. Examples of materials to avoid are: natural rubber (NR), nitrile rubber (NBR), ethylene propylene rubber (EPDM), polymethyl methacrylate (PMMA), polystyrene, polyvinyl chloride (PVC), polyisobutylene. However, some may be suitable for glove materials. Do not cut, drill, grind, weld or perform similar operations on or near containers. Containers, even those that have been emptied, can contain explosive vapours.
Conditions for safe storage, in	cluding any incompatibilities
Suitable container	 Packing as supplied by manufacturer. Plastic containers may only be used if approved for flammable liquid. Check that containers are clearly labelled and free from leaks. For low viscosity materials (i) : Drums and jerry cans must be of the non-removable head type. (ii) : Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
Storage incompatibility	Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	cyclohexanone	Cyclohexanone	25 ppm / 100 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	methyl ethyl ketone	Methyl ethyl ketone (MEK)	150 ppm / 445 mg/m3	890 mg/m3 / 300 ppm	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
cyclohexanone	60 ppm	830 ppm		5000* ppm
methyl ethyl ketone	Not Available	Not Available		Not Available
naphtha petroleum, light aromatic solvent	1,200 mg/m3	6,700 mg/m3		40,000 mg/m3
Ingredient	Original IDLH		Revised IDL H	
ingreatent				
cyclohexanone	700 ppm		Not Available	
methyl ethyl ketone	3,000 ppm		Not Available	

aromatic solvent

MATERIAL DATA

For cyclohexanone

naphtha petroleum, light

Odour Threshold Value: 0.12 ppm (detection and recognition)

Exposure at the TLV-TWA produces minimal irritation and this limit is significantly lower than the concentration reported to just induce demonstrable changes in the liver and kidneys of rabbits repeatedly exposed to the substance (190 ppm).

Not Available

Odour Safety Factor (OSF)

OSF=28 (CYCLOHEXANONE)

For methyl ethyl ketone:

Odour Threshold Value: Variously reported as 2 ppm and 4.8 ppm

Odour threshold: 2 ppm (detection); 5 ppm (recognition) 25 ppm (easy recognition); 300 ppm IRRITATING

Not Available

Exposures at or below the recommended TLV-TWA are thought to prevent injurious systemic effects and to minimise objections to odour and irritation. Where synergism or potentiation may occur stringent control of the primary toxin (e.g. n-hexane or methyl butyl ketone) is desirable and additional consideration should be given to lowering MEK exposures.

Odour Safety Factor(OSF)

OSF=28 (METHYL ETHYL KETONE)

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

F		
FYNOSI	IFE CC	ntrois
LADUS		

	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:
Appropriate engineering	Process controls which involve changing the way a job activity or process is done to reduce the risk.
controls	Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically
	"adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a
	ventilation system must match the particular process and chemical or contaminant in use.
	Employers may need to use multiple types of controls to prevent employee overexposure.

Air Speed: 0 25-0 5 m/s

(50-100 f/min) 0.5-1 m/s

(100-200

(200-500)

f/min.)

f/min.) 1-2.5 m/s

CAMCLEAN Universal Gun Cleaner

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: solvent, vapours, degreasing etc., evaporating from tank (in still air). aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance. · Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures. · Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered.. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus) Individual protection measures, such as personal protective equipment Safety glasses with side shields Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption Eye and face protection and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. Skin protection See Hand protection below ▶ Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: · frequency and duration of contact. · chemical resistance of glove material, · glove thickness and dexterity Hands/feet protection Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). . When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374. AS/NZS 2161.10.1 or national equivalent) is recommended. · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: Excellent when breakthrough time > 480 min

· Good when breakthrough time > 20 min

· Fair when breakthrough time < 20 min

- · Poor when glove material degrades
- For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation

	efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Body protection	See Other protection below
Other protection	 Overalls. PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower. Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

CAMCLEAN Universal Gun Cleaner

Material	СРІ
BUTYL	A
PE/EVAL/PE	A
BUTYL/NEOPRENE	С
HYPALON	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PVA	С
PVC	С
SARANEX-23	С
TEFLON	С
VITON/NEOPRENE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 Physical and chemical properties

Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	A-AUS / Class 1	-	A-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	A-2	A-PAPR-2
up to 50 x ES	-	A-3	-
50+ x ES	-	Air-line**	-

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Information on basic physical	Information on basic physical and chemical properties		
Appearance	Clear liquid with a characteristic odour; not miscible with water.		
Physical state	Liquid	Relative density (Water = 1)	0.83
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available

Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	79-135	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	-6	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	>95
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	Inhalation of vapours or aerosols (mists, furnes), generated by the material during the course of normal handling, may be harmful. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Cyclohexanone vapour irritates the nose, throat and eyes at concentrations of 50 ppm. Histological examination of the lungs of mice that had been exposed at 4730 ppm of cyclohexanone for two hours showed congestion, oedema and focal to diffuse haemorrhage of the lung parenchyma. A 6 hour exposure of guinea pigs at 4000 ppm resulted in narcosis, hypothermia, and decreased respiration. Recovery from narcosis was slow and 3 out of 10 guinea pigs originally exposed, died within 4 days of the exposure. Rabbits exposed at 190 ppm for 50 dally, 6 hour exposures showed barely demonstrable degenerative changes in liver and kidney. Similar exposures at 309 ppm produced slight conjunctival irritation, at 1414 ppm lethargy and at 3082 ppm, incoordination, salivation, laboured breathing, narcosis and death. Inhalation hazard is increased at higher temperatures. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression -
Ingestion	Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed. Ingestion may result in nausea, pain and vomiting. Vomit entering the lungs by aspiration may cause potentially lethal chemical pneumonitis
Skin Contact	 Skin contact with the material may be harmful; systemic effects may result following absorption. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Open cuts, abraded or irritated skin should not be exposed to this material The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material either: produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Aromatic hydrocarbons may produce skin irritation, vasodilation with erythema and changes in endothelial cell permeability. Systemic intoxication, resulting from contact with the light aromatics, is unlikely due to the slow rate of permeation. Branching of the side chain appears to

	increase percutaneous absorption.	
Еуе	Evidence exists, or practical experience predicts, that the in may produce significant ocular lesions which are present the contact may cause significant inflammation with pain. Corre prompt and adequate. Repeated or prolonged exposure to windburn) of the conjunctiva (conjunctivitis); temporary impundituded cyclohexanone placed in the eyes of rabbits pro Petroleum hydrocarbons may produce pain after direct con result. The aromatic fraction may produce irritation and lact and a sector sector.	naterial may cause severe eye irritation in a substantial number of individuals and/or wenty-four hours or more after instillation into the eye(s) of experimental animals. Eye heal injury may occur; permanent impairment of vision may result unless treatment is irritants may cause inflammation characterised by a temporary redness (similar to vairment of vision and/or other transient eye damage/ulceration may occur. duced marked irritation and some corneal injury tact with the eyes. Slight, but transient disturbances of the corneal epithelium may also hrymation.
	Long-term exposure to respiratory irritants may result in di	sease of the airways involving difficult breathing and related systemic problems.
Chronic	Exposure to the material may cause concerns for humans appropriate animal studies provide strong suspicion of dev the same dose levels as other toxic effects but which are r Prolonged or repeated skin contact may cause drying with On the basis, primarily, of animal experiments, concern ha carcinogenic or mutagenic effects; in respect of the availat satisfactory assessment. Limited evidence suggests that repeated or long-term occu biochemical systems. Long term cyclohexanone exposure may cause liver and k all exposure in pregnancy, cyclohexanone may cause birth Chronic solvent inhalation exposures may result in nervou	owing to possible developmental toxic effects, generally on the basis that results in elopmental toxicity in the absence of signs of marked maternal toxicity, or at around ot a secondary non-specific consequence of other toxic effects. cracking, irritation and possible dermatitis following. s been expressed by at least one classification body that the material may produce ole information, however, there presently exists inadequate data for making a upational exposure may produce cumulative health effects involving organs or idney changes. Clouding of the eye lens and cataract development may occur. Avoid defects. s system impairment and liver and blood changes. [PATTYS]
	TOVICITY	
CAMCLEAN Universal Gun Cleaner	Not Available	Not Available
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: 948 mg/kg ^[2]	Eye (human): 75 ppm
cyclohexanone	Inhalation(Rat) LC50: 8000 ppm4h ^[2]	Eye (rabbit): 0.25 mg/24h SEVERE
	Oral (Rat) LD50: 1535 mg/kg ^[2]	Eye (rabbit): 4.74 mg SEVERE
		Skin (rabbit): 500 mg(open) mild
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: 6480 mg/kg ^[2]	Eye (human): 350 ppm -irritant
methyl ethyl ketone	Inhalation(Mouse) LC50; 32 mg/L4h ^[2]	Eye (rabbit): 80 mg - irritant
	Oral (Rat) LD50: 2054 mg/kg ^[1]	Skin (rabbit): 402 mg/24 hr - mild
		Skin (rabbit):13.78mg/24 hr open - mild
	ΤΟΧΙΟΙΤΥ	IRRITATION
naphtha petroleum, light	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
aromatic solvent	Inhalation(Rat) LC50: >4.42 mg/L4h ^[1]	Skin: adverse effect observed (irritating) ^[1]
	Oral (Rat) LD50: >4500 mg/kg ^[1]	
Legend:	1. Value obtained from Europe ECHA Registered Substan specified data extracted from RTECS - Register of Toxic E	ces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise ffect of chemical Substances
CYCLOHEXANONE	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited i	n animal testing.
METHYL ETHYL KETONE	The material may cause skin irritation after prolonged or re dermatitis is often characterised by skin redness (erythem spongy layer (spongiosis) and intracellular oedema of the	peated exposure and may produce a contact dermatitis (nonallergic). This form of a) and swelling the epidermis. Histologically there may be intercellular oedema of the epidermis.
	Inhalation (rat) TCLo: 1320 ppm/6h/90D-I * [Devoe] For Low Boiling Point Naphthas (LBPNs): Acute toxicity: I BPNs generally have low acute toxicity by the oral (media	an lethal dose [I D50] in rats > 2000 mg/kg-bw) inhalation (I D50 in rats > 5000 mg/m3)

LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure

Most LBPNs are mild to moderate eye and skin irritants in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices.

Sensitisation:

LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies Reneat dose toxicity:

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT Repeat dose toxicity: The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation route of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin, an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values. Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAEC identified in these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats following a 13-week exposure to light catalytic cracked naphtha. Shorter exposures of rats to this test substance resulted in nasal irritation at

9041 mg/m3

No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying histopathological changes were increased, in a dose-dependent manner, at doses as low as 30 mg/kg-bw per day when applied 5 days per week for 90 days in rats

No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3

A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported.

Genotoxicity:

Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results.

For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline (containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells. For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation and positive results for the Ames and mouse lymphoma assay. Gasoline exhibited negative results for the sister chromatid exchange assay.

While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results.

Carcinogenicity:

Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinogen; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effects of human exposure to LBPN substances. No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for

its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously. Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group. Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1%

All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in petroleum refining" as Group 2A carcinogens (probably carcinogenic to humans). Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were

conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light catalytic cracked naphtha, light straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol. **Reproductive/ Developmental toxicity:**

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents.

NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 64742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 8631-02-0) were noted. For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13.

For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring.

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins.

The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver.

For trimethylbenzenes:

Absorption of 1.2.4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion . After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates . The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid The major routes of excretion of 1,2,4-trimethyl- benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates. Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis . High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness . The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1.2.4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg). Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels . No effects were reported for rats exposed to a mixture of trimethyl- benzenes at 1700 ppm for 10 to 21 days Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia.

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation. (6 hours/day for 5 days); and does not induce sister chromosome in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced bidy weight iter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible develop- mental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation

For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute Toxicity

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50 s range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines.

Irritation and Sensitization

Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory areas in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified. Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs.

The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects.

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a

single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hvdrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3, respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex /group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex /group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3). Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a litter, number of females delivering a litter male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation,, a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality.

Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring.

Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity.

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation. Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus. Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Methyl ethyl ketone is considered to have a low order of toxicity; however methyl ethyl ketone is often used in combination with other solvents and the toxic effects of the mix may be greater than either solvent alone. Combinations of n-hexane with methyl ethyl ketone and also methyl n-butyl ketone with methyl ethyl ketone show increase in peripheral neuropathy, a progressive disorder of nerves of extremities. Combinations with chloroform also show increase in toxicity

Cyclohexanone

Acute toxicity: Cyclohexanone exhibits low to slight acute toxicity by the oral and inhalation routes and is moderately toxic by the dermal route. It is an eye and skin irritant; however, it did not induce skin sensitisation.

There has been no consistent indication that cyclohexanone causes neurotoxicity, although signs of CNS depression were noted at doses near the LD50. Therefore, this material could not be classified regarding its potential neurotoxicity to humans.

Repeat dose toxicity: Upon repeated administration to rats in drinking water, the NOAEL was 4700 ppm after 25 weeks and the LOAEL was 3300 ppm after 2 years. Effects at higher concentrations were primarily body weight decreases. The NOAEL in published repeated dose

inhalation studies was 100-190 ppm. Those values were based on either gray mottling of the lungs or ocular irritation and degenerative changes in the liver and kidney at higher concentrations. However, the NOAEL in those studies was not confirmed in more conclusive and GLP inhalation studies for reproductive and developmental effects (NOAEL = 650-1000 ppm).

Genotoxicity: The majority of the experimental evidence indicates that cyclohexanone is not genotoxic, and this material was not considered to be carcinogenic in mice or rats following two years of exposure via the drinking water.

Reproductive toxicity: In a two-generation reproduction study, decreased fertility was observed in rats exposed via inhalation at 1400 ppm but not at 500 ppm; however, the effect was found to be reversible following a post-exposure recovery period. The NOAEL of 500 ppm for this reproductive effect is 1000 times greater than the highest occupational personal monitoring value (0.5 ppm) reported.

Developmental toxicity: Developmental studies indicate that foetal toxicity was present only at concentrations which were maternally toxic, and no malformations were detected.

CAMCLEAN Universal Gun Cleaner & METHYL ETHYL KETONE

CAMCLEAN Universal Gun Cleaner & CYCLOHEXANONE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.			epeated or prolonged exposure to irritants may ce a contact dermatitis (nonallergic). This form of gically there may be intercellular oedema of the
Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×
		Legend: 🗙 – Data either r	not available or does not fill the criteria for classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
Cleaner	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	17.7-85.6mg/l	4
cyclohexanone	EC50	48h	Crustacea	>100mg/l	2
	LC50	96h	Fish	481-578mg/l	4
	EC10(ECx)	72h	Algae or other aquatic plants	0.4-7.93mg/l	4
methyl ethyl ketone	Endpoint	Test Duration (hr)	Species	Value	Sourc
	EC50	72h	Algae or other aquatic plants	1220mg/l	2
	EC50	48h	Crustacea	308mg/l	2
	EC50	96h	Algae or other aquatic plants	>500mg/l	4
	NOEC(ECx)	48h	Crustacea	68mg/l	2
	LC50	96h	Fish	>324mg/L	4
	Endpoint	Test Duration (hr)	Species	Value	Source
naphtha petroleum, light	EC50	72h	Algae or other aquatic plants	19mg/l	1
	EC50	48h	Crustacea	6.14mg/l	1
aromatic solvent	EC50	96h	Algae or other aquatic plants	64mg/l	2
	NOEC(ECx)	72h	Algae or other aquatic plants	1mg/l	1

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For cyclohexanone:

Koc : 10

Half-life (hr) air : 24-100 Half-life (hr) H2O surface water : 74-100 Henry's atm m3 /mol: 1.20E-05 BOD 5 : 1.232,32% COD : 100% ThOD : 2.605 log BCF : 0.39

Bioaccumulation : not sig

Degradation Biological: sig processes Abiotic: RxnOH*,oxid&hydrl&photl notsig

Environmental fate:

Cyclohexanone degrades rapidly by reaction with sunlight and is biodegradable in water. On soil surfaces and in water, cyclohexanone is expected to be eliminated by volatilisation, photolysis, and biodegradation. Based on the low Koc, this material is considered to be highly mobile in soil. Fugacity level Ib environmental modeling indicates that cyclohexanone will partition almost exclusively to the air (31%) and water (69%). The low octanol/water coefficient suggests that cyclohexanone is unlikely to bioconcentrate in aquatic organisms; therefore, potential for secondary poisoning is low.

Ecotoxicity:

Fish LC50 (96 h): 720-1100 mg/L

Experimentally, cyclohexanone has exhibited low acute toxicity towards freshwater fish species and the microcrustacean Daphnia magna, slight acute toxicity to algae and protozoa, and moderate acute toxicity to bacteria.

For Methyl Ethyl Ketone: log Kow: 0.26-0.69; log Koc: 0.69; Koc: 34; Half-life (hr) air: 2.3;

[—] Data available to make classification

Half-life (hr) H2O surface water: 72-288; Henry's atm m3 /mol: 1.05E-05; BOD 5: 1.5-2.24, 46%; COD: 2.2-2.31, 100%; ThOD: 2.44; BCF: 1.

Environmental Fate: Terrestrial Fate - Measured Koc values of 29 and 34 were obtained for methyl ethyl ketone is silt loams. Methyl ethyl ketone is expected to have very high mobility in soil. Volatilization of methyl ethyl ketone from moist and dry soil surfaces is expected. The volatilization half-life of methyl ethyl ketone from silt and sandy loams was measured as 4.9 days. Methyl ethyl ketone is expected to biodegrade under both aerobic and anaerobic conditions.

Aquatic Fate: Methyl ethyl ketone is not expected to adsorb to suspended solids and sediment in water and is expected to volatilize from water surfaces. Estimated half-lives for a model river and model lake are 19 and 197, hours respectively. Bioconcentration is expected to be low in aquatic systems.

Atmospheric Fate: Methyl ethyl ketone will exist solely as a vapour in the ambient atmosphere. Vapour-phase methyl ethyl ketone is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 14 days. Methyl ethyl ketone is also expected to undergo photodecomposition in the atmosphere by natural sunlight.

Ecotoxicity: Methyl ethyl ketone is not acutely toxic to fish, specifically, bluegill sunfish, guppy, goldfish, fathead minnow, mosquito fish, Daphnia magna water fleas and brine shrimp. For Ketones: Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds.

Aquatic Fate: Hydrolysis of ketones in water is thermodynamically favourable only for low molecular weight ketones. Reactions with water are reversible with no permanent change in the structure of the ketone substrate. Ketones are stable to water under ambient environmental conditions. When pH levels are greater than 10, condensation reactions can occur which produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavourable. Based on its reactions in air, it seems likely that ketones undergo photolysis in water.

Terrestrial Fate: It is probable that ketones will be biodegraded by micro-organisms in soil and water.

Ecotoxicity: Ketones are unlikely to bioconcentrate or biomagnify

For hydrocarbons:

Environmental fate:

The lower molecular weight hydrocarbons are expected to form a "slick" on the surface of waters after release in calm sea conditions. This is expected to evaporate and enter the atmosphere where it will be degraded through reaction with hydroxy radicals.

Some hydrocarbon will become associated with benthic sediments, and it is likely to be spread over a fairly wide area of sea floor. Marine sediments may be either aerobic or anaerobic. The material, in probability, is biodegradable, under aerobic conditions (isomerised olefins and alkenes show variable results). Evidence also suggests that the hydrocarbons may be degradable under anaerobic conditions although such degradation in benthic sediments may be a relatively slow process.

Under aerobic conditions hydrocarbons degrade to water and carbon dioxide, while under anaerobic processes they produce water, methane and carbon dioxide.

Alkenes have low log octanol/water partition coefficients (Kow) of about 1 and estimated bioconcentration factors (BCF) of about 10; aromatics have intermediate values (log Kow values of 2-3 and BCF values of 20-200), while C5 and greater alkanes have fairly high values (log Kow values of about 3-4.5 and BCF values of 100-1,500

The estimated volatilisation half-lives for alkanes and benzene, toluene, ethylbenzene, xylene (BTEX) components were predicted as 7 days in ponds, 1.5 days in rivers, and 6 days in lakes. The volatilisation rate of naphthalene and its substituted derivatives were estimated to be slower.

Indigenous microbes found in many natural settings (e.g., soils, groundwater, ponds) have been shown to be capable of degrading organic compounds. Unlike other fate processes that disperse contaminants in the environment, biodegradation can eliminate the contaminants without transferring them across media.

The final products of microbial degradation are carbon dioxide, water, and microbial biomass. The rate of hydrocarbon degradation depends on the chemical composition of the product released to the environment as well as site-specific environmental factors. Generally the straight chain hydrocarbons and the aromatics are degraded more readily than the highly branched aliphatic compounds. The n-alkanes, n-alkyl aromatics, and the aromatics in the C10-C22 range are the most readily biodegradable; n-alkanes, n-alkyl aromatics, and aromatics in the C5-C9 range are biodegradable at low concentrations by some microorganisms, but are generally preferentially removed by volatilisation and thus are unavailable in most environments; n-alkanes in the C1-C4 ranges are biodegradable only by a narrow range of specialised hydrocarbon degraders; and n-alkanes, n-alkyl aromatics, and aromatics above C22 are generally not available to degrading microorganisms. Hydrocarbons with condensed ring structures, such as PAHs with four or more rings, have been shown to be relatively resistant to biodegradation. PAHs with only 2 or 3 rings (e.g., naphthalene, anthracene) are more easily biodegraded. In almost all cases, the presence of oxygen is essential for effective biodegradation of oil. The ideal pH range to promote biodegradation is close to neutral (6-8). For most species, the optimal pH is slightly alkaline, that is, greater than 7. All biological transformations are affected by temperature. Generally, as the temperature increases, biological activity tends to increase up to a temperature where enzyme denaturation occurs.

Atmospheric fate: Alkanes, isoalkanes, and cycloalkanes have half-lives on the order of 1-10 days, whereas alkenes, cycloalkenes, and substituted benzenes have half-lives of 1 day or less. Photochemical oxidation products include aldehydes, hydroxy compounds, nitro compounds, and peroxyacyl nitrates. Alkenes, certain substituted aromatics, and naphthalene are potentially susceptible to direct photolysis.

Ecotoxicity:

Hydrocarbons are hydrophobic (high log Kow and low water solubility). Such substances produce toxicity in aquatic organisms by a mechanism referred to as "non-polar narcosis" or "baseline" toxicity. The hydrophobicity increases and water solubility decreases with increasing carbon number for a particular class of hydrocarbon. Substances with the same carbon number show increased hydrophobicity and decreased solubility with increasing saturation. Quantitative structure activity relationships (QSAR), relating both solubility and toxicity to Kow predict that the water solubility of single chemical substances decreases more rapidly with increasing Kow than does the acute toxicity.

Based on test results, as well as theoretical considerations, the potential for bioaccumulation may be high. Toxic effects are often observed in species such as blue mussel, daphnia, freshwater green algae, marine copepods and amphipods.

The values of log Kow for individual hydrocarbons increase with increasing carbon number within homologous series of generic types. Quantitative structure activity relationships (QSAR), relating log Kow values of single hydrocarbons to toxicity, show that water solubility decreases more rapidly with increasing Kow than does the concentration causing effects. This relationship varies somewhat with species of hydrocarbon, but it follows that there is a log Kow limit for hydrocarbons, above which, they will not exhibit acute toxicity; this limit is at a log Kow value of about 4 to 5. It has been confirmed experimentally that for fish and invertebrates, paraffinic hydrocarbons with a carbon number of 10 or higher (log Kow >5) show no acute toxicity and that alkylbenzenes with a carbon number of 14 or greater (log Kow >5) similarly show no acute toxicity.

QSAR equations for chronic toxicity also suggest that there should be a point where hydrocarbons with high log Kow values become so insoluble in water that they will not cause chronic toxicity, that is, that there is also a solubility cut-off for chronic toxicity. Thus, paraffinic hydrocarbons with carbon numbers of greater than 14 (log Kow >7.3) should show no measurable chronic toxicity. Experimental support for this cut-off is demonstrated by chronic toxicity studies on lubricant base oils and one "heavy" solvent grade (substances composed of paraffins of C20 and greater) which show no effects after exposures to concentrations well above solubility.

The initial criteria for classification of substances as dangerous to the aquatic environment are based upon acute toxicity data in fish, daphnids and algae. However, for substances that have low solubility and show no acute toxicity, the possibility of a long-term or chronic hazard to the environment is recognised in the R53 phrase or so-called "safety net". The R53 assignment for possible long-term harm is a surrogate for chronic toxicity test results and is triggered by substances that are both bioaccumulative and persistent. The indicators of bioaccumulation and persistence are taken as a BCF > 100 (or log Kow > 3 if no BCF data) and lack of ready biodegradability. For low solubility substances which have direct chronic toxicity at a demonstrating no chronic toxicity at 1 mg/L or higher, these data take precedence such that no classification for long term toxicity is required. Drinking Water Standards: hydrocarbon total: 10 ug/l (UK max.).

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
cyclohexanone	LOW	LOW
methyl ethyl ketone	LOW (Half-life = 14 days)	LOW (Half-life = 26.75 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
cyclohexanone	LOW (BCF = 2.45)
methyl ethyl ketone	LOW (LogKOW = 0.29)

Ingredient	Mobility
cyclohexanone	LOW (KOC = 15.15)
methyl ethyl ketone	MEDIUM (KOC = 3.827)

SECTION 13 Disposal considerations

Waste treatment methods	
	 Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/ recycling if possible. Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Reduction Reuse Recycling Disposal (if all else fails)
Product / Packaging disposal	 This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Recycle wherever possible. Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). Decontaminate empty containers. Observe all label safeouards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required	
Marine Pollutant	
HAZCHEM	•3YE

Land transport (ADG)

UN number or ID number	1263		
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
Transport hazard class(es)	Class Subsidiary risk	3 Not Applicable	
Packing group	II		
Environmental hazard	Environmentally hazardous		
Special precautions for user	Special provisions Limited quantity	s 163 367 5 L	

Air transport (ICAO-IATA / DGR)

	,		
UN number	1263		
UN proper shipping name	Paint related material (including paint thinning or reducing compounds); Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base)		
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	ot Applicable	

Packing group	I		
Environmental hazard	Environmentally hazardous		
	Special provisions	A3 A72 A192	
Special precautions for user	Cargo Only Packing Instructions	364	
	Cargo Only Maximum Qty / Pack	60 L	
	Passenger and Cargo Packing Instructions	353	
	Passenger and Cargo Maximum Qty / Pack	5 L	
	Passenger and Cargo Limited Quantity Packing Instructions	Y341	
	Passenger and Cargo Limited Maximum Qty / Pack	1 L	

Sea transport (IMDG-Code / GGVSee)

UN number	1263		
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
Transport hazard class(es)	IMDG Class	3 Not Applicable	
Packing group	П		
Environmental hazard	Marine Pollutant		
Special precautions for user	EMS Number Special provisions Limited Quantities	F-E, S-E 163 367 5 L	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
cyclohexanone	Not Available
methyl ethyl ketone	Not Available
naphtha petroleum, light aromatic solvent	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
cyclohexanone	Not Available
methyl ethyl ketone	Not Available
naphtha petroleum, light aromatic solvent	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

cyclohexanone is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

methyl ethyl ketone is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5

naphtha petroleum, light aromatic solvent is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (cyclohexanone; methyl ethyl ketone; naphtha petroleum, light aromatic solvent)
China - IECSC	Yes

National Inventory	Status
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	10/03/2023
Initial Date	16/12/2009

SDS Version Summary

Version	Date of Update	Sections Updated
7.1	23/12/2022	Classification review due to GHS Revision change.
8.1	10/03/2023	Classification change due to full database hazard calculation/update.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average PC - STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists

- STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations
- ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- BCF: BioConcentration Factors
- BEI: Biological Exposure Index
- AIIC: Australian Inventory of Industrial Chemicals
- DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- IECSC: Inventory of Existing Chemical Substance in China
- EINECS: European INventory of Existing Commercial chemical Substances
- ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer Polymers
- ENCS: Existing and New Chemical Substances Inventory
- KECI: Korea Existing Chemicals Inventory
- NZIoC: New Zealand Inventory of Chemicals
- PICCS: Philippine Inventory of Chemicals and Chemical Substances
- TSCA: Toxic Substances Control Act
- TCSI: Taiwan Chemical Substance Inventory
- INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances